82 research outputs found

    On Rearrangement of Items Stored in Stacks

    Full text link
    There are n2n \ge 2 stacks, each filled with dd items, and one empty stack. Every stack has capacity d>0d > 0. A robot arm, in one stack operation (step), may pop one item from the top of a non-empty stack and subsequently push it onto a stack not at capacity. In a {\em labeled} problem, all ndnd items are distinguishable and are initially randomly scattered in the nn stacks. The items must be rearranged using pop-and-pushs so that in the end, the kthk^{\rm th} stack holds items (k1)d+1,,kd(k-1)d +1, \ldots, kd, in that order, from the top to the bottom for all 1kn1 \le k \le n. In an {\em unlabeled} problem, the ndnd items are of nn types of dd each. The goal is to rearrange items so that items of type kk are located in the kthk^{\rm th} stack for all 1kn1 \le k \le n. In carrying out the rearrangement, a natural question is to find the least number of required pop-and-pushes. Our main contributions are: (1) an algorithm for restoring the order of n2n^2 items stored in an n×nn \times n table using only 2n2n column and row permutations, and its generalization, and (2) an algorithm with a guaranteed upper bound of O(nd)O(nd) steps for solving both versions of the stack rearrangement problem when dcnd \le \lceil cn \rceil for arbitrary fixed positive number cc. In terms of the required number of steps, the labeled and unlabeled version have lower bounds Ω(nd+ndlogdlogn)\Omega(nd + nd{\frac{\log d}{\log n}}) and Ω(nd)\Omega(nd), respectively

    The quantum adversary method and classical formula size lower bounds

    Get PDF
    We introduce two new complexity measures for Boolean functions, or more generally for functions of the form f:S->T. We call these measures sumPI and maxPI. The quantity sumPI has been emerging through a line of research on quantum query complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [SS04] with the realization that these many different formulations are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function, we begin to investigate this quantity in its own right and see that it also has applications to classical complexity theory. As a surprising application we show that sumPI^2(f) is a lower bound on the formula size, and even, up to a constant multiplicative factor, the probabilistic formula size of f. We show that several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], including a key lemma of [Has98], are in fact special cases of our method. The second quantity we introduce, maxPI(f), is always at least as large as sumPI(f), and is derived from sumPI in such a way that maxPI^2(f) remains a lower bound on formula size. While sumPI(f) is always a lower bound on the quantum query complexity of f, this is not the case in general for maxPI(f). A strong advantage of sumPI(f) is that it has both primal and dual characterizations, and thus it is relatively easy to give both upper and lower bounds on the sumPI complexity of functions. To demonstrate this, we look at a few concrete examples, for three functions: recursive majority of three, a function defined by Ambainis, and the collision problem.Comment: Appears in Conference on Computational Complexity 200

    Quantum advantage for combinatorial optimization problems, Simplified

    Full text link
    We observe that fault-tolerant quantum computers have an optimal advantage over classical computers in approximating solutions to many NP optimization problems. This observation however gives nothing in practice

    Quantum Algorithms for the Triangle Problem

    Full text link
    We present two new quantum algorithms that either find a triangle (a copy of K3K_{3}) in an undirected graph GG on nn nodes, or reject if GG is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes O~(n10/7)\tilde{O}(n^{10/7}) queries. The second algorithm uses O~(n13/10)\tilde{O}(n^{13/10}) queries, and it is based on a design concept of Ambainis~\cite{amb04} that incorporates the benefits of quantum walks into Grover search~\cite{gro96}. The first algorithm uses only O(logn)O(\log n) qubits in its quantum subroutines, whereas the second one uses O(n) qubits. The Triangle Problem was first treated in~\cite{bdhhmsw01}, where an algorithm with O(n+nm)O(n+\sqrt{nm}) query complexity was presented, where mm is the number of edges of GG.Comment: Several typos are fixed, and full proofs are included. Full version of the paper accepted to SODA'0
    corecore